
Security Assessment

Aurus
AurusX.sol

Smart Contracts Audit
Date: 9th October, 2022

Table of Content

Table of Content 2
Introduction 3

Auditing Approach and Methodologies 3
Audit Details 3

Audit Goals 4
Security 4
Sound Architecture 4
Code Correctness and Quality 4

Security 5
High-level severity issues 5
Medium level severity issues 5
Low-level severity issues 5
Informational-level severity issues 5

Vulnerability Summary 6
Manual Audit 7
Automated Audit 8

Solhint Linting Violations 8
Slither 8
Mythril 9

Disclaimer 10
Summary 10

1. Introduction
This Audit Report mainly focuses on the overall security of AurusX.sol. With this report,
we have tried to ensure the reliability and correctness of their smart contract by a complete
and rigorous assessment of their system's architecture and the smart contract codebase.

1.1 Auditing Approach and Methodologies

The NonceAudit team has performed rigorous analysis of the project starting with analyzing
the code design patterns in which we reviewed the smart contract architecture to ensure it
is well structured and safe use of third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract to find any
potential issues like race conditions, transaction-ordering dependence, timestamp
dependence, and denial of service attacks. In Automated Testing, we tested the Smart
Contract with industry standard tools to identify vulnerabilities and security flaws.

The audit approach included:
• Analyzing the complexity of the code in-depth and detailed, manual review of the code,

line-by-line.
• Analyzing failure preparations to check how the Smart Contract performs in case of

any bugs and vulnerabilities.
• Checking whether all the libraries used in the code are on the latest version.
• Analyzing the security of the on-chain data.

1.2 Audit Details
Project Name : Aurus
ID: ARS
Git commit hash: a7c15579c0a7cb3917d0aa02e5447596c91ce47e
Languages: Solidity (Smart contracts)
Platforms and Tools: Remix IDE, Solhint, VScode, Slither, Mythril

2. Audit Goals
The focus of the audit was to verify that the Smart Contract System is secure, resilient, and working

according to the specifications. The audit activities can be grouped into the following three categories:

2.1. Security
Identifying security-related issues within each contract and the system of contract.

2.2. Sound Architecture
Evaluation of the architecture of this system through the lens of established smart contract best practices

and general software best practices.

2.3. Code Correctness and Quality
A full review of the contract source code. The primary areas of focus include:

● Accuracy

● Readability

● Sections of code with high complexity

3. Security
Every issue in this report was assigned a severity level from the following:

High-level severity issues
Issues on this level are critical to the smart contract’s performance/functionality and
should be fixed before moving to a live environment.

Medium level severity issues
Issues on this level could potentially bring problems and should eventually be fixed.

Low-level severity issues
Issues on this level are minor details and warnings that can remain unfixed but would
be better fixed.

Informational-level severity issues
Issues on this level are informational details that can remain unfixed but would be better
fixed.

4. Vulnerability Summary

ID Title Severity Status

ARS-01 Incorrect Versions of Solidity Informational level CLOSED

5. Manual Audit
For this section, the code was tested/read line by line by our developers. We also used Remix IDE’s

JavaScript VM to test the contract functionality.

● High-level severity issues
○ Not Found

● Medium level severity issues
○ Not Found

● Low Level Severity issues
○ Not Found

● Informational-level severity issues
○ Not Found

6. Automated Audit

6.1 Solhint Linting Violations

Solhint is an open-source project for linting solidity code, providing both security and style guide validations. It

integrates seamlessly into most mainstream IDEs. We used Solhint as a plugin within our Remix IDE for this

analysis. Several violations were detected by Solhint, it is recommended to use Solhint’s npm package to lint

the contract.

11:103 warning Visibility modifier must be first in list of modifiers

6.2 Slither
Slither, an open-source static analysis framework. This tool provides rich information about Ethereum smart

contracts and has critical properties. While Slither is built as a security-oriented static analysis framework, it is

also used to enhance the user’s understanding of smart contracts, assist in code reviews, and detect missing

optimizations.

● High-level severity issues
○ Not Found

● Medium level severity issues
○ Not Found

● Low Level Severity issues
○ Not Found

https://www.npmjs.com/package/solhint

● Informational-level severity issues
○ Title: Incorrect versions of Solidity
○ ID: ARS-01
○ Line of Code: L3

○ status: CLOSED
○ Description: solc frequently releases new compiler versions. Using an old version prevents

access to new Solidity security checks. We also recommend avoiding complex pragma

statements.
○ Recommendation: Deploy with any of the following Solidity versions:

● 0.7.5 - 0.7.6
● 0.8.4 - 0.8.7

Use a simple pragma version that allows any of these versions. Consider using the latest
version of Solidity for testing.

6.3 Mythril
Mythril is a security analysis tool for EVM bytecode. It detects security vulnerabilities in smart contracts built
for Ethereum, Hedera, Quorum, Vechain, Roostock, Tron and other EVM-compatible blockchains. It uses
symbolic execution, SMT solving and taint analysis to detect a variety of security vulnerabilities.

● High-level severity issues
○ Not Found

● Medium level severity issues
○ Not Found

● Low Level Severity issues
○ Not Found

● Informational-level severity issues
○ Not Found

7. Disclaimer
NonceAudit audit is not a security warranty, investment advice, or an endorsement of Aurus contract.

Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to

this audit is strongly recommended.

8. Summary
The use case of the smart contract is simple and the code is relatively normal. Altogether, the code is written

and demonstrates effective use of ERC20PausableUpgradeable and OwnableUpgradeable.

www.nonceaudits.com

